591 research outputs found

    A Comparative Analysis of the Graduation Resources Used by the Defense Lawyers in Chinese and American Courts——A Case Study of the Wang Chengzhong Case and the Stump Case

    Get PDF
    Based on one of the subsystems of the appraisal system—the graduation system, this article analyzes the utterances of the defense lawyers in the Stump case and the Wang Chengzhong case to compare the similarities and differences of the graduation resources by the defense lawyers on both cases, to reveal the reasons behind them, and to explore what role these graduation resources play in court defense discourse. The study found that the overall trends of the graduation resources used by the defense lawyers in the Stump case and the Wang Chengzhong case are similar. Both parties prefer to use force resources while use focus resources less frequently. This is mainly related to the effects of different kinds of graduation resources and the responsibilities of defense lawyers. In focus resources, in Wang Chengzhong case, the proportion of sharpening resources is significantly higher than that of softening resources, while in Stump case, the proportion of softening resources is higher than that of sharpening resources. This may be related to the differences of eastern and western thinking pattern and the nature of these two different cases. Keywords: graduation system, defense lawyers, courtroom discourse, case study DOI: 10.7176/JLLL/74-01 Publication date: December 31st 202

    Mountain muon tomography using a liquid scintillator detector

    Full text link
    Muon tomography (MT), based on atmospheric cosmic rays, is a promising technique suitable for nondestructive imaging of the internal structures of mountains. This method uses the measured flux distribution after attenuation, combined with the known muon angular and energy distributions and a 3D satellite map, to perform tomographic imaging of the density distribution inside a probed volume. A muon tomography station (MTS) requires direction-sensitive detectors with a high resolution for optimal tracking of incident cosmic-ray muons. The spherical liquid scintillator detector is one of the best candidates for this application due to its uniform detection efficiency for the whole 4π4\pi solid angle and its excellent ability to distinguish muon signals from the radioactive background via the difference in the energy deposit. This type of detector, with a 1.3~m diameter, was used in the Jinping Neutrino Experiment~(JNE). Its angular resolution is 4.9~degrees. Following the application of imaging for structures of Jinping Mountain with JNE published results based on the detector, we apply it to geological prospecting. For mountains below 1~km in height and 2.8~g/cm3{\rm g}/{\rm cm}^3 in the reference rock, we demonstrate that this kind of detector can image internal regions with densities of ≤\leq 2.1~g/cm3{\rm g}/{\rm cm}^3 or ≥\geq 3.5~g/cm3{\rm g}/{\rm cm}^3 and hundreds of meters in size

    Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods

    Get PDF
    Spinel zinc manganese oxide (ZnMn2O4) nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C

    Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amplification of oncogenes initiated by high-risk human papillomavirus (HPV) infection is an early event in cervical carcinogenesis and can be used for cervical lesion diagnosis. We measured the genomic amplification rates and the patterns of human telomerase RNA gene (TERC) and C-MYC in the liquid-based cytological specimens to evaluate the diagnostic characteristics for the detection of high-grade cervical lesions.</p> <p>Methods</p> <p>Two hundred and forty-three residual cytological specimens were obtained from outpatients aged 25 to 64 years at Qilu Hospital, Shandong University. The specimens were evaluated by fluorescence in situ hybridization (FISH) using chromosome probes to TERC (3q26) and C-MYC (8q24). All of the patients underwent colposcopic examination and histological evaluation. A Chi-square test was used for categorical data analysis.</p> <p>Results</p> <p>In the normal, cervical intraepithelial neoplasia grade 1 (CIN1), grade 2 (CIN2), grade 3 (CIN3) and squamous cervical cancer (SCC) cases, the TERC positive rates were 9.2%, 17.2%, 76.2%, 100.0% and 100.0%, respectively; the C-MYC positive rates were 20.7%, 31.0%, 71.4%, 81.8% and 100.0%, respectively. The TERC and C-MYC positive rates were higher in the CIN2+ (CIN2, CIN3 and SCC) cases than in the normal and CIN1 cases (<it>p </it>< 0.01). Compared with cytological analysis, the TERC test showed higher sensitivity (90.0% vs. 84.0%) and higher specificity (89.6% vs. 64.3%). The C-MYC test showed lower sensitivity (80.0% vs. 84.0%) and higher specificity (77.7% vs. 64.3%). Using a cut-off value of 5% or more aberrant cells, the TERC test showed the highest combination of sensitivity and specificity. The CIN2+ group showed more high-level TERC gene copy number (GCN) cells than did the normal/CIN1 group (<it>p </it>< 0.05). For C-MYC, no significant difference between the two histological categories was detected (<it>p </it>> 0.05).</p> <p>Conclusions</p> <p>The TERC test is highly sensitive and is therefore suitable for cervical cancer screening. The C-MYC test is not suitable for cancer screening because of its lower sensitivity. The amplification patterns of TERC become more diverse and complex as the severity of cervical diseases increases, whereas for C-MYC, the amplification patterns are similar between the normal/CIN1 and CIN2+ groups.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/1308004512669913</url>.</p

    Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction

    Full text link
    The correction of exposure-related issues is a pivotal component in enhancing the quality of images, offering substantial implications for various computer vision tasks. Historically, most methodologies have predominantly utilized spatial domain recovery, offering limited consideration to the potentialities of the frequency domain. Additionally, there has been a lack of a unified perspective towards low-light enhancement, exposure correction, and multi-exposure fusion, complicating and impeding the optimization of image processing. In response to these challenges, this paper proposes a novel methodology that leverages the frequency domain to improve and unify the handling of exposure correction tasks. Our method introduces Holistic Frequency Attention and Dynamic Frequency Feed-Forward Network, which replace conventional correlation computation in the spatial-domain. They form a foundational building block that facilitates a U-shaped Holistic Dynamic Frequency Transformer as a filter to extract global information and dynamically select important frequency bands for image restoration. Complementing this, we employ a Laplacian pyramid to decompose images into distinct frequency bands, followed by multiple restorers, each tuned to recover specific frequency-band information. The pyramid fusion allows a more detailed and nuanced image restoration process. Ultimately, our structure unifies the three tasks of low-light enhancement, exposure correction, and multi-exposure fusion, enabling comprehensive treatment of all classical exposure errors. Benchmarking on mainstream datasets for these tasks, our proposed method achieves state-of-the-art results, paving the way for more sophisticated and unified solutions in exposure correction

    Atomic-level design of CoOH+-hydroxyapatite@C catalysts for superfast degradation of organics via peroxymonosulfate activation

    Get PDF
    We report a strategy for simultaneous cobalt removal and organic waste decomposition by using mesoporous hydroxyapatite nanoparticles wrapped in uniform carbon layers (HA@C). The in situ formation of CoOH+-HA@C due to ion exchange greatly improved the degradation efficiency by at least one order of magnitude compared to free Co2+

    Gesture Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot Study

    Get PDF
    Electrocorticography (ECoG) has been demonstrated as a promising neural signal source for developing brain-machine interfaces (BMIs). However, many concerns about the disadvantages brought by large craniotomy for implanting the ECoG grid limit the clinical translation of ECoG-based BMIs. In this study, we collected clinical ECoG signals from the sensorimotor cortex of three epileptic participants when they performed hand gestures. The ECoG power spectrum in hybrid frequency bands was extracted to build a synchronous real-time BMI system. High decoding accuracy of the three gestures was achieved in both offline analysis (85.7%, 84.5%, and 69.7%) and online tests (80% and 82%, tested on two participants only). We found that the decoding performance was maintained even with a subset of channels selected by a greedy algorithm. More importantly, these selected channels were mostly distributed along the central sulcus and clustered in the area of 3 interelectrode squares. Our findings of the reduced and clustered distribution of ECoG channels further supported the feasibility of clinically implementing the ECoG-based BMI system for the control of hand gestures

    Retrieval of atmospheric trace gases from satellite infrared limb sounding data

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument which operated in the near-to-mid infrared on the Envisat satellite from 2002– 2012 is a Fourier-transform spectrometer for the measurement of high-resolution atmospheric emission spectra at the Earth’s limb. The initial operational products are profiles of temperature, H2O, O3, CH4, N2O, HNO3, and NO2, and this list is extended to include the important GHG (greenhouse gases) and ODS (ozone depleting substances) species using MORSE (orbital retrieval processor). This paper discusses retrievals of minor trace species of HCFC-22, HOCl, OCS, C2H6, COF2, HCN, CF4, SF6, and CCl4. Preliminary zonal mean results of these retrievals are satisfactory except for HCN and CF4 species. We then use MIPAS to estimate the total F and Cl budget in the atmosphere. Comparisons with SLIMCAT are also discussed, with the results consistent. Finally, we focus on improving the retrieval method for minor trace species, COF2, by adjusting correlation length and a priori constraint, as well as the chi-square method introduced to analyze noise. Tests have shown that our improvement could get more information from the measurements
    • …
    corecore